KINETIC PARAMETERS OF THE THERMAL DECOMPOSITION OF Cu(II) AND Zn(II) SALTS OF CARBOXYLIC ACIDS*

J. Masłowska** and A. Baranowska

INSTITUTE OF FUNDAMENTAL FOOD CHEMISTRY, TECHNICAL UNIVERSITY, ŁÓDŹ, POLAND

(Received March 15, 1983, in revised form December 6, 1983)

The kinetic parameters of thermal decomposition of Cu(II) and Zn(II) salts of carboxylic acids were investigated on the basis of the respective thermal curves. The values of the activation energy (E_a) of thermal decomposition, reaction order (n), frequency factor (A) and velocity constant (k) (in the Arrhenius kinetic equation), established from thermal data, were compared. Based on the initial decomposition temperature, the following sequences of stabilities of the studied compounds have been proposed:

- 1. $Cu(CH_{3}COO)_{2}$ (235°) > $Cu(C_{6}H_{5}O_{7})_{2}$ (220°) > $Cu(HCOO)_{2}$ (150°) > > $Cu(OH)_{2} \cdot Cu(CO_{3})$ (50°)
- 2. $Zn(C_{18}H_{35}O_2)_2$ (305°) > $ZnCO_3$ (210°) > $Zn(CH_3COO)_2$ (170°)

A knowledge of the thermal decomposition stages and mechanisms involved in the heating of salts of metals with carboxylic acids is useful in many branches of the chemical industry and in food chemistry [1-5]. In the latter branch the transition metal ions are very important as microelements [3, 6, 7]. The carboxylic acids are among of the basic components of food [3, 6].

The salts which have been investigated, anhydrous and hydrated, are listed in Table 1. The methods used to obtain them, and their properties, were described earlier [7]. In this paper we present the mechanism of their decomposition and calculations of the kinetic parameters of this decomposition.

Experimental

The thermal curves were recorded on a MOM (Budapest) derivatograph, equipped with a four-channel recorder and TGT and DTGT adapters for titration of gases. Samples of the Cu(II) or Zn(II) salts were heated in corundum crucibles, using α -Al₂O₃ (corundum) as reference. In the gaseous products of decomposition of the

^{*} Paper presented at the XXII. International Conference on Coordination Chemistry in Budapest on August 23-27, 1982.

^{**} To whom all correspondence should be addressed.

310 MASLOWSKA, BARANOWSKA: KINETIC PARAMETERS

sample, the acid components were determined by means of adsorption in the TGT and DTGT adapter, and then by titration with 0.1 *M* KOH at pH 9.2. In the solid products obtained in crucibles, the total metal contents were determined by complexometric methods [8]. The diffractograms of these solid products were made on a DRON (USSR) apparatus using $Cu_k \alpha_1$ radiation.

Results and discussion

Figure 1 shows the thermal curves of the Cu(II) and Zn(II) salts in a dynamic argon atmosphere, and Fig. 2 those of the Cu(II) salts in static air atmosphere. We have found that the thermal decompositions of the studied compounds display one or two stages. These stages are accompanied by endothermic effects. The weight losses and consumptions of the 0.1 *M* KOH for the titration of acid gases from the decomposition in dynamic argon are given in Table 1. The hydrated salts decompose in two stages. The first stage of weight loss is connected with dehydration and the second with pyrolysis. We have found that the hydrated Cu(II) salts lose their crystallization water at the following temperatures:

 $\begin{aligned} & \text{Cu}(\text{CH}_3\text{COO})_2 \cdot \text{H}_2\text{O} \ (90^\circ) > \text{Cu}(\text{C}_6\text{H}_5\text{O}_7)_2 \cdot 2.5 \text{ H}_2\text{O} \ (80^\circ) > \\ & > \text{Cu}(\text{HCOO})_2 \cdot 2 \text{ H}_2\text{O} \ (50^\circ) \end{aligned}$

The weight losses and diffractograms show that the final products in the decomposition of the Cu(II) salts are free copper, CuO or Cu₂O, or a mixture of these components. In the case of Cu(II) citrate, Cu(C₆H₅O₇)₂, free carbon has also been in the solid-state products. Table 2 presents examples of d/n and I/I_0 values from powder diffractograms of solid-state products obtained from Cu(HCOO)₂ \cdot 2 H₂O and Cu(CH₃COO)₂ \cdot H₂O.

The thermal decomposition of the Zn(II) compounds is simpler than that of the Cu(II) salts. This is connected with the difference in redoxy properties. As the final decomposition product of the Zn(II) salts, ZnO has been found. The weight losses suggest that during the thermal decomposition acid anhydrides are formed. This has been confirmed by the consumption of 0.1 M KOH for the titration of the gas products.

The thermal decomposition of $Zn(CH_3COO)_2 \cdot 2H_2O$ may be described by Eqs (1) and (2):

$$Zn(CH_3COO)_2 \cdot 2 H_2O \longrightarrow Zn(CH_3COO)_2 + 2 H_2O$$
⁽¹⁾

$$Zn(CH_3COO)_2 \longrightarrow ZnO + (CH_3CO)_2O$$
⁽²⁾

With the initial decomposition temperature as criterion of thermal stability, the following series of thermal stabilities of the studied compounds may be proposed:

$$Cu(CH_3COO)_2$$
 (235°) > $Cu(C_6H_5O_7)_2$ (220°) > $Cu(HCOO)_2$ (150°) >
> $Cu_2(OH)_2CO_3$ (50°)

J. Thermal Anal. 29, 1984

and

Table 3 gives values of the activation energy E_a , the reaction order *n*, frequency factor *A* and velocity constant *k* for the thermal decomposition of the compounds under test. The calculation technique and equations used were given earlier [2, 7].

Fig. 1 Thermal curves obtained in the dynamic argon atmosphere (V = 20 dm³/h). Heating rate 5 deg min⁻¹. a) Cu(HCOO)₂ · 2 H₂O; b) Cu(CH₃COO)₂ · H₂O; c) Cu₃(C₆H₅O₇)₂ · 2.5 H₂O; d) Cu(OH)₂ · CuCO₃; e) Zn(CH₃COO)₂ · 2 H₂O; f) Zn(C₁₈H₃₅O₂)₂. Sensitivity: DTA 1/5; DTG 1/10; DTGT 1/10

Studied compound	Mass of the sample, mg	Temperature ranges, °C	Weight loss, %	Consumption of 0.1 M KOH, cm ³	Metal contents in the sintered products,	Decomposition reactions
Zn(CH ₃ COO) ₂ • 2 H ₂ O	200	50–150 170–360	17 47	0 17.8	80.4	$Zn(CH_3COO)_2 \cdot 2 H_2O \rightarrow Zn(CH_3COO)_2 + H_2O$ $Zn(CH_3COO)_2 \rightarrow ZnO + (CH_3CO)_2O$
Zn(C ₁₈ H ₃₅ O ₂) ₂	200	305510	86	6.3	79.6	Zn(C ₁₈ H ₃₅ O ₂) ₂ → ZnO + (C ₁₈ H ₃₅ O) ₂ O
ZnCO ₃	200	210-400	33	16.4	79.4	$ZnCO_3 \rightarrow ZnO + CO_2$
си(СН ₃ СОО) ₂ · H ₂ O	500	90–180 235–325	11 58	0 24.0	82.4	$ \begin{array}{l} Cu(CH_3COO)_2 \cdot H_2O \rightarrow Cu(CH_3COO)_2 + H_2O \\ Cu(CH_3COO)_2 \rightarrow CuO + CH_3CHO + H_2O + CO + C \\ CuO + CH_3CHO \rightarrow Cu_2O + CO_2 \\ CuO + CO + Cu + CO_2 \\ CuO + CO \rightarrow Cu + CO_2 \\ C + 2 CuO \rightarrow Cu + CO_2 \\ \end{array} $
C(C ₆ H ₅ O ₇) ₂ · 2.5 H ₂ O	500	80220 220340	8 63 8	0 21.5	83.2	$Cu(C_6H_5O_7)_2 \cdot 2.5 H_2O \rightarrow Cu(C_6H_5O_7)_2 + 2.5 H_2O$ $Cu(C_6H_5O_7)_2 \rightarrow Cu + CuO + Cu_2O + gas products$
Cu(HCOO) ₂ • 2 H ₂ O	500	50150 150240	17 48	0 54.0	84.3	$Cu(HCOO)_2 \cdot 2 H_2O \rightarrow Cu(HCOO)_2 + 2 H_2O$ $Cu(HCOO)_2 \rightarrow Cu + H_2 + 2 CO_2$

Table 1 Data based on thermograms and add:tional investigations the dynamic argon atmospheres

J. Thermal Anal. 29, 1984

MASŁOWSKA, BARANOWSKA: KINETIC PARAMETERS

Fig. 2 Thermal curves obtained in the static air atmosphere. Heating rate 10 deg/min, $m_0 = 500$ mg

The thermogravimetric data on $Cu(CH_3COO)_2 \cdot H_2O$ were used to calculate the relationship between $\log dm/dt$ and 1/T (Fig. 3) or $1/T tg + \log dm/dt$ and $\log c$ (Fig. 4), where

$$c = \frac{\Delta m_{\infty} - \Delta m}{\Delta m_{\infty}}$$

The value of the error in the determination of E_a in this way is $\pm 3.5\%$ while for A it is $\pm 5.2\%$.

The value of the velocity constant k was calculated at 290 K.

Sintered products				Literature data [9, 10]								
Cu(HC • 2	00) ₂ . H ₂ O	Cu(CH3 ・H	COO) ₂ · 1 ₂ O	C	Cu	Cu	1 ₂ 0	с	uO	C (ten	uO eryt)	
d/n	<i>\//</i> 0	d/n	1/10	d/n	1/10	d/n	1/10	d/n	//I ₀	d/n	///0	
										2.72	20	
		2.60	32					2.51	100	2.52	100	
		2.43	6			2.46	100					
		2.23	12									
2.16	100	2.16		2.08	100	2.13	80					
1.88	45	1.85	48	1.81	53			1.85	20			
						1.74	20	1.70	8	1.70	20	
										1.58	30	
		1.51	9			1.51	80	1.50	15			
								1.41	20			
						1.34	40					
		1.20	6							1.30	20	
1.28	18	1.28	24	1.28	33	1.28	80					
								1.26	10	1.26	40	

 Table 2 Comparison of identify numbers of powder diffractograms of sintered products

A

Fig. 3 Graphic determination of activation energy E_a of reaction (E_a = 2.303 • R • tg α for the Cu(CH₃COO)₂ • H₂O): a) the dehydration of reaction Cu(CH₃COO)₂ • H₂O → → Cu(CH₃COO)₂ + H₂O; tg α = 3 • 10³, E_a = 57.4 kJ/mol; b) the thermal decomposition of reaction: Cu(CH₃COO)₂ → Cu + gas products; tg α = 1 • 10⁴, E_a = 191.5 kJ/mol

Fig. 4 Graphic determination of the velocity constant k of reaction ($\lg k = \lg A - E_a/2.303$ RT) for the Cu(CH₃COO)₂ • H₂O: a) the dehydration of reaction: $n = tg \theta = 0.2$, $A = 2.3 \cdot 10^8$, $k = 7.1 \cdot 10^{-3}$; b) the thermal decomposition of reaction: n = 0.5, $A = 3.8 \cdot 10^{20}$, $k = 9.5 \cdot 10^{-13}$

J. Thermal Anal. 29, 1984

No.	Compound formula	Tempera- ture range, K	Activation energy <i>E_a,</i> kJ/mol	Order of reaction <i>n</i>	Value of A	Valocity constant k in temp. 290 K, s ⁻¹
		Dehydra	ation reactio	ns		
1.	$Zn(CH_3COO)_2 \cdot 2H_2O$	323-423	45.0	0.2	1.2 · 10 ⁸	8.6 • 10-1
2.	Cu(HCOO) ₂ • 2 H ₂ O	323-423	74.7	0.5	8,7 · 10 ¹¹	4.3 · 10 ⁻²
3.	$Cu(CH_3COO)_2 \cdot H_2O$	263-453	57.4	0.2	2.3 • 10 ⁸	7.1 · 10 <u></u> _3
4.	$Cu(C_6H_5O_7)_2 \cdot 2.5H_2O_7)_2$	353 49 3	63.2	0.3	3.9 • 10 ⁹	$2.1 \cdot 10^{-2}$
		Thermai	decomposit	tion reaction	s	
5.	Zn(CH ₃ COO) ₂	443633	109.0	0.2	2.8 · 10 ¹²	1.7 • 10 ⁻⁷
6.	Zn(C18H35O2)2	578–783	97.7	0.2	1.7 • 10 ⁹	7.9 · 10-9
7.	ZnCO ₃	483–673	172.3	0.1	2.3 · 10 ¹⁸	2.4 • 10-13
8.	Cu(HCOO) ₂	423-613	159.4	1.1	3.7 • 10 ¹⁹	4.0 • 10 - 10
9.	Cu(CH ₃ COO) ₂	508-598	191.5	0.5	3.8 • 10 ²⁰	9.5 · 10 ⁻¹³
10.	$Cu(C_6H_5O_7)_2$	493–613	226.0	1.0	1.0 · 10 ²⁴	9.4 • 10 ⁻¹⁸
11.	$Cu_2CO_3(OH)_2$	323-603	181.9	0.9	$5.7 \cdot 10^{18}$	3.2 · 10-14

Table 3 Kinetic parameters of the thermal decompositions of Cu(II) and Zn(II) salts with carboxylic acids

References

- 1 D. R. Williams, Chem. Rev., 3 (1972) 202.
- 2 J. Masłowska and J. B. Baranowski, Zeszyty Naukowe P. Ł., Chemia, 33 (1977) 27.
- 3 J. Janicek, J. Pokorny and J. Dawidek, Food Chemistry, WNT, W-wa, 1977.
- 4 M. Nikonorow, The Chemical and Biological Contaminations of in Food, WNT, Warszawa, 1976.
- 5 W. W. Wendlandt and J. P. Smith, The Thermal Properties of Transition Metal Ammina Complexes, Elsevier, Amsterdam, 1967.
- 6 E. J. Underwood, Trace Elements in Human and Animal Nutrition, 111, New York, London, 1971.

- 7 J. Masłowska, J. Baranowski, E. Chruścińska, A. Baranowska and K. Marszal, Zeszyty Naukowe P. Ł., Technologia i Chemia Spożywcza, 35 (1980) 321.
- 8 F. J. Welcher, The Analytical Uses of Ethylenediamine Tetracetic Acid, WNT, Warszawa, 1963.
- 9 E. Przybora, Roentgenostructural identification methods of Minerals and Rocks, Wydawnictwo Geologiczne, Warszawa, 1957.
- 10 Powder Diffraction File, ASTM Special Technical Publication, 48, J. M. Soc. for Testing Materials, Race Street, Philadelphia, 1916.

Zusammenfassung – Die kinetischen Parameter der thermischen Zersetzung von Verbindungen der Formeln $M(HCOO)_2 \cdot n H_2O$, $M(CH_3COO)_2 \cdot n H_2O$, $M(C_6H_5O_7) \cdot n H_2O$, $M(C_{18}H_{35}O_2)_2$ und $M(OH)_2 \Rightarrow MCO_3$ ($M = Cu^{2+}$ oder Zn^{2+} ; n = 1, 2, ...) wurden mittels TG und DTG untersucht. Die Reaktionsordnung (n) und die Aktivierungsenergie (E_a) wurden nach der graphischen Methode ermittelt. Резюме — Исследованы кинетические параметры термического разложения карбоксилатов двухвалентных меди и цинка, исходя из их соответствующих термических кривых. Установлены и сопоставлены значения энергии активации (*E_a*) термического разложения, порядок реакции, частотный множитель (*A*) и константа скорости (*k*) в уравнения Аррениуса. На основе начальных температур разложения выведен следующий порядок устойчивости изученных соединений:

- 1. $Cu(CH_{3}COO)_{2}$ (235°) > $Cu(C_{6}H_{5}O_{7})_{2}$ (220°) > $Cu(HCOO)_{2}$ (150°) > > $Cu(OH)_{2} \cdot CuCO_{3}$ (50°).
- 2. $Zn(C_{18}H_{35}O_2)_2$ (305°) > $ZnCO_3$ (210°) > $Zn(CH_3COO)_2$ (170°).